Atmos. Chem. Phys. Discuss., 14, 12863–12886, 2014 www.atmos-chem-phys-discuss.net/14/12863/2014/ doi:10.5194/acpd-14-12863-2014 © Author(s) 2014. CC Attribution 3.0 License.

This discussion paper is/has been under review for the journal Atmospheric Chemistry and Physics (ACP). Please refer to the corresponding final paper in ACP if available.

Exploring the chemical fate of the sulfate radical anion by reaction with sulfur dioxide in the gas phase

N. T. Tsona¹, N. Bork^{1,2}, and H. Vehkamäki¹

¹Division of Atmospheric Sciences and Geophysics, Department of Physics, University of Helsinki, P.O. Box 64, 00014 University of Helsinki, Finland ²Department of Chemistry, University of Copenhagen, 2100, Copenhagen, Denmark

Received: 5 March 2014 - Accepted: 5 May 2014 - Published: 20 May 2014

Correspondence to: N. T. Tsona (narcisse.tsonatchinda@helsinki.fi)

Published by Copernicus Publications on behalf of the European Geosciences Union.

Abstract

The gas phase reaction between $SO_4^-(H_2O)_n$ and SO_2 , n = 0-2, is investigated using ab initio calculations and kinetic modeling. Structures of reactants, transition states and products are reported. Our calculations predict that the $SO_2SO_4^-(H_2O)_n$ cluster ion, formed upon SO_2 and $SO_4^-(H_2O)_n$ collision, can isomerize to $SO_3SO_3^-(H_2O)_n$. The overall reaction is SO_2 oxidation by the $SO_4^-(H_2O)_n$ anionic cluster. The results show that $SO_4^-(H_2O)_n$ is a good SO_2 oxidant, especially at low relative humidity, with a reaction rate constant up to 1.1×10^{-10} cm³ molecule⁻¹ s⁻¹. At high relative humidity, instead, the re-evaporation of SO_2 from the $SO_2SO_4^-(H_2O)_n$ cluster ion is favoured.

10 **1** Introduction

The sulfur cycle is one of the most important cycles in the atmosphere as sulfur oxidation products, most notably sulfuric acid (H₂SO₄), have a significant contribution in the formation of acid rain, aerosols, and clouds. The most abundant sulfurous molecule in the atmosphere is sulfur dioxide (SO₂), emitted form volcanoes and fossil fuels com-¹⁵ bustion. The major atmospheric sink of SO₂ is its oxidation in the gas phase, mostly by the hydroxyl radical (OH) in a UV-light induced mechanism. This mechanism is well known to be the predominant source of atmospheric H₂SO₄. Other important SO₂ oxidation mechanisms involve stabilized Criegee intermediates (Welz et al., 2012; Mauldin III et al., 2012; Vereecken et al., 2012), mineral dust (Harris et al., 2013), and atmo-

²⁰ spheric ions (Enghoff et al., 2012; Bork et al., 2013).

The ionic SO₂ oxidation mechanism in the gas phase is more complex than the neutral oxidation since many oxysulfur anions can be formed, and each of them may trigger new reactions. In many gas phase laboratory studies, the SO₃⁻, SO₄⁻, and SO₅⁻ anions have been observed as ionic SO₂ oxidation products (Fehsenfeld and Ferguson,

²⁵ 1974; Fahey et al., 1982; Möhler et al., 1992). However, their further reactions in the gas phase are still not well known. Using quantum chemical calculations, Bork et al.

(2013) investigated the chemical fate of SO_5^- after collisions with O_3 , and found that SO_4^- is one of the reaction end products. As opposed to SO_4^{2-} which does not exist in the atmosphere as a free species (Boldyrev and Simons, 1994; Wang et al., 2000), the SO_4^- anion as well as the other anions mentioned above were recently detected in a boreal forest in Finland (Ehn et al., 2010) and in the CLOUD aerosol chamber (Kirkby et al., 2011). Despite these observations, the further chemistry of SO_4^- in the gas phase remains poorly understood.

The first reactive properties of SO_4^- in the gas phase were studied by Fehsenfeld and Ferguson (1974). They observed that SO_4^- binds efficiently to SO_2 , but neither the structure, further outcome, nor the effect of hydration on the resulting cluster was examined. We present an in-depth investigation of the gas phase reaction between SO_4^- and SO_2 at standard conditions, including up to two water molecules. The main pathways in this reaction are depicted in Fig. 1. We used ab initio calculations to determine struc-

tures and formation energies of reactants, reactant complexes (RC), transition states (TS), and products. The reaction rate constants were calculated, the effect of hydration on the reactions was examined and the distribution of clusters at thermal equilibrium was determined.

2 Methodology

5

Configuration energies and vibrational frequencies of reactants, RC, TS, and products
of the reaction between SO₄⁻(H₂O)₀₋₂ and SO₂ were calculated using density functional theory (DFT). Several different density functionals are regularly applied to molecular clustering reactions with predictions often differing by more than one kcal mol⁻¹ (Herb et al., 2013; Ortega et al., 2012; Nadykto et al., 2008; Dawson et al., 2012). PW91 and B3LYP are two of the most popular functionals, but for anionic systems the CAMB3LYP functional is superior to B3LYP by the inclusion of long-range correction (Yanai et al., 2004). In some recent studies (Bork et al., 2011, 2012; Elm et al., 2012) the

CAM-B3LYP functional was found to perform well in the description of systems similar to those explored here and we use this functional with the aug-cc-pVDZ (aVDZ) basis set (Dunning, 1989).

It is well known that single-point coupled cluster electronic energy calculations per-

- formed on the CAM-B3LYP/aVDZ optimized geometries improve estimates of the Gibbs free energy change (Bork et al., 2014; Tsona et al., 2014). Test calculations were carried out using the explicitly correlated coupled cluster singles, doubles, and perturbative triples method CCSD(T) (Purvis and Bartlett, 1982) with the aVDZ and aVTZ basis sets, and the CCSD(T)-F12 method (Alder et al., 2007; Peterson et al., 2008) with the VDZ-F12 and VTZ-F12 basis sets (Peterson et al., 2008). All species with an unpaired
- ¹⁰ VDZ-F12 and VTZ-F12 basis sets (Peterson et al., 2008). All species with an unpaired number of electrons were treated with UCCSD(T) (or UCCSD(T)-F12) based on a restricted open-shell Hartree–Fock reference. The total formation Gibbs free energy ΔG of a reaction was calculated as

15

 $\Delta G = \Delta G_{\mathsf{DFT}} - \Delta E_{\mathsf{DFT}} + \Delta E_{\mathsf{CCDS}(\mathsf{T})},$

where ΔG_{DFT} denotes the Gibbs free energy change of the reaction calculated with DFT, and where ΔE_{DFT} and $\Delta E_{\text{CCSD}(T)}$ are electronic energy changes calculated with DFT and the CCSD(T) (or CCSD(T)-F12), respectively. Note that the structures are not optimized at CCSD(T) and CCSD(T)-F12 levels of theory.

- ²⁰ Table 1 shows the changes in binding Gibbs free energy and Gibbs free energy barrier with the chosen methods for three representative reactions. It is seen that the different methods perform similarly, resulting in Gibbs free energy changes generally within 1 kcal mol⁻¹. Although CCSD(T)/aVDZ is the least accurate of the tested coupled cluster calculations, we find that this method, when used in combination with CAM-
- B3LYP/aVDZ on these systems, provide the results in best agreement with experiment, most likely due to fortunate error cancellation. Considering also the extended computational expense of the three other methods, we chose the CCSD(T)/aVDZ method for electronic energy correction throughout this study. The T1 and D1 diagnostic values on CCSD(T)/aVDZ calculations were typically between 0.02 and 0.04, and 0.07 and 0.28,

(1)

respectively. These values indicate a low to modest multireference character for the computed species and thus, the CCSD(T)/aVDZ method should describe reasonably well the reactions energetics explored in this study.

- The TS structures were obtained by configurational energy scans along the reaction coordinate with a stepsize down to 0.01 Å starting from the RC. The configurations closest to the TS were thereafter refined using the Synchronous Transit Quasi-Newton method (Peng et al., 1996). A single imaginary frequency, corresponding to the correct reaction coordinate, was found in all TS structures. Finally, Intrinsic Reaction Coordinate calculations (Fukui, 1981) were performed on all TS to ensure their connectivity to the desired reactants and products. All structure optimizations and vibrational fre-
- quency calculations were carried out using the Gaussian 09 package (Frisch et al., 2009) while single point coupled cluster calculations were performed using the Molpro program (Werner et al., 2012a, b).

3 Results and discussions

15 3.1 Thermodynamics

The initial collisions between SO₂ and SO₄⁻(H₂O)_n led to the barrierless formation of $SO_2SO_4^-(H_2O)_n$ cluster complexes as

 $SO_2 + SO_4^-(H_2O)_n \rightarrow SO_2SO_4^-(H_2O)_n$.

The structures of the $SO_2SO_4^-(H_2O)_n$ clusters were thereby optimized and they are shown in Fig. 2a. Regardless of the degree of hydration, one SO_4^- oxygen atom is clearly coordinating the SO_2 sulfur atom. The Gibbs free energy changes of Reaction (R1) are shown in Fig. 3 and the numerical values are given in the Supplement. Under standard conditions, we determined the binding Gibbs free energy of SO_2 and $SO_4^-(H_2O)_n$ to be $\Delta G_{(R1)}^o = -5.6$, -3.6, and -2.5 kcal mol⁻¹ for n = 0, 1, and 2, re-

(R1)

spectively. The decrease in Gibbs free energy gain with increasing degree of hydration is most likely a result of the reduced electrostatic strain of the $SO_4^-(H_2O)_n$ cluster. Experimental data is available from Fehsenfeld and Ferguson (1974) who found $\Delta G_{(R1)}^o = -6.7 \text{ kcal mol}^{-1}$ for n = 0. We can conclude that our calculations somewhat underestimate the experimental binding energy of SO₂ and SO₄⁻ at standard conditions.

Since Reaction (R1) is distinctly exothermic, the $SO_2SO_4^-(H_2O)_n$ clusters are formed with a large amount of excess internal energy, which may lead to partial H_2O evaporation. The SO_2 in the cluster may thereafter oxidize (Reaction R2a) or re-evaporate to form the initial reactants (Reaction R2b) as

$$SO_2SO_4^-(H_2O)_n \rightarrow \begin{cases} SO_3SO_3^-(H_2O)_n, & (a) \\ SO_2 + SO_4^-(H_2O)_n. & (b) \end{cases}$$

5

10

The structures of the TS and the products of Reaction (R2a) were optimized and their geometries are shown in Fig. 2b and c, respectively. Reaction (R2a) is exothermic $(\Delta G^o_{(B2a)} = -3.9, -3.6 \text{ and } -2.6 \text{ kcal mol}^{-1} \text{ for } n = 0, 1 \text{ and } 2, \text{ respectively}), \text{ albeit there}$ exists an energy barrier towards the formation of the products. The Gibbs free energy 15 barriers for n = 0, 1, and 2 were determined to be 10.0, 8.8, and 10.8 kcal mol⁻¹, respectively. In Reaction (R2a), one SO₄ oxygen atom is transfered to the SO₂ sulfur atom by forming a SOS linkage through a TS configuration. The S-O bond lengths in the SOS linkage of the TS are ca. 1.65 Å and 2.06 Å on the SO₄ and SO₂ sides, respectively, and they are weakly altered by the hydration. The structures of the TS 20 and $SO_3SO_3^-(H_2O)_n$ clusters are very similar, they mostly differ by the lengths of S–O bonds in the SOS linkage. For the $SO_3SO_3(H_2O)_n$ structures, the S–O bonds in the SOS linkage are longer on the former SO_4 side than on the former SO_2 side. The $SO_3SO_3^-(H_2O)_n$ clusters can thus be regarded as $SO_3^-(H_2O)_n$ and SO_3 donor-acceptor interaction products. 25

(R2)

3.2 Kinetics

5

20

Considering Reactions (R1), (R2a), and (R2b), we can use the steady state approximation for $SO_2SO_4^-(H_2O)_n$ and obtain

$$k_{\text{coll},(\text{R1})} \left[\text{SO}_2 \right] \left[\text{SO}_4^-(\text{H}_2\text{O})_n \right] = (k_{\text{ox},(\text{R2a})} + k_{\text{evap},(\text{R2b})}) \left[\text{SO}_2\text{SO}_4^-(\text{H}_2\text{O})_n \right],$$
 (2)

where $k_{\text{coll},(\text{R1})}$ is the collision rate constant of SO₂ and SO₄⁻(H₂O)_n, $k_{\text{ox},(\text{R2a})}$ is the rate constant of SO₂ oxidation in the RC, and $k_{\text{evap},(\text{R2b})}$ is the rate constant of RC dissociation to form the initial reactants.

The reaction rate of SO₂ oxidation in the SO₂SO₄⁻(H₂O)_n complex can be written as

¹⁰
$$r_{\text{ox},(\text{R2a})} = k_{\text{ox},(\text{R2a})} \left[\text{SO}_2 \text{SO}_4^-(\text{H}_2 \text{O})_n \right],$$
 (3)
= $k_{\text{ox},\text{ bimol}} \left[\text{SO}_2 \right] \left[\text{SO}_4^-(\text{H}_2 \text{O})_n \right],$ (4)

where the bimolecular rate constant $k_{\text{ox, bimol}}$ of the SO₂ + SO₄⁻(H₂O)_n reaction is obtained by combining Eqs. (2) and (3) as

15
$$k_{\text{ox, bimol}} = k_{\text{coll, (R1)}} \frac{k_{\text{ox,(R2a)}}}{k_{\text{ox,(R2a)}} + k_{\text{evap,(R2b)}}}.$$
 (5)

The evaporation rate constant, $k_{evap,(R2b)}$, is determined from the detailed balance condition (Vehkamäki, 2006; Ortega et al., 2012) as

$$k_{\text{evap},(\text{R2b})} = k_{\text{coll},(\text{R2a})} \times \rho_{\text{atm}} \times \exp\left(-\frac{\Delta G_{(\text{R2b})}}{RT}\right),\tag{6}$$

where ρ_{atm} is the standard density (at T = 298.15 K and $\rho = 1 \text{ atm}$, $\rho_{\text{atm}} = 2.5 \times 10^{19} \text{ molecule cm}^{-3}$) and *R* is the molar gas constant.

Several parameterizations of the ion-dipole collision rate has been presented. Here we use the version by Su and Chesnavich (1982) which we find to yield collision rates within 10 to 20% of the parameterizations presented by Su and Bowers (1973) and Nadykto and Yu (2003). The Su and Chesnavich parameterization is given by

⁵ $k_{\text{coll},(\text{R1})} = \beta^{\text{L}} \times (0.4767x + 0.6200),$

where $\beta^{L} = q\mu^{-1/2} (\pi \alpha/\epsilon_0)^{1/2}$, $x = \mu_{D}/(8\pi\epsilon_0 \alpha k_{B}T)^{1/2}$, *q* is the charge of the ion, μ is the reduced mass of the colliding species, α and μ_{D} are the polarizability and dipole moment of the polar molecule, and k_{B} is Boltzmann's constant.

¹⁰ The oxidation rate constant, $k_{ox,(R2a)}$, is calculated using Eyring's equation (Eyring, 1935) as

$$k_{\text{ox},(\text{R2a})} = \frac{k_{\text{B}}T}{h} \times \exp\left(-\frac{\Delta G_{(\text{R2a})}^{\ddagger}}{RT}\right)$$

where $\Delta G_{(R2a)}^{\ddagger}$ is the Gibbs free energy of activation and *h* is Planck's constant. The values of $k_{ox, bimol}$ were obtained and they are given in Table 2. It can be seen that the formation of $SO_3SO_3^-(H_2O)_n$ from the $SO_2 + SO_4^-(H_2O)_n$ reaction is relatively fast at low relative humidity (RH). To the best of our knowledge, there is no experimental data available for direct comparison. However, we found that the rate constant, 1.1×10^{-10} cm³ molecule⁻¹ s⁻¹, of the unhydrated reaction is close to the rate constants of other similar reactions involving either SO_2 or SO_4^- . For the SO_2 oxidation reaction by the CO_3^- anion, Fehsenfeld and Ferguson (1974) and Möhler et al. (1992) reported reaction rate constants of 2.3×10^{-10} and 4.7×10^{-10} cm³ molecule⁻¹ s⁻¹, respectively. Further, Fehsenfeld and Ferguson (1974) investigated the $SO_4^- + NO_2$ reaction and determined a rate constant < 2×10^{-11} cm³ molecule⁻¹ s⁻¹.

²⁵ Considering the high computed rate constant of Reaction (R2a) at low RH, it is likely that $SO_3SO_3^-(H_2O)_n$ will form from the SO_2 and $SO_4^-(H_2O)_n$ collision at standard condi-

tions. To evaluate the stability of the $SO_3SO_3(H_2O)_n$ clusters we considered its decomposition through two main processes: evaporation of a SO_3 molecule (Reaction R3a) and formation of $SO_2SO_4(H_2O)_n$ by the reverse direction of Reaction (R2a) (i.e., Reaction R3b).

$${}_{5} SO_{3}SO_{3}^{-}(H_{2}O)_{n} \rightarrow \begin{cases} SO_{3} + SO_{3}^{-}(H_{2}O)_{n}, & (a) \\ SO_{2}SO_{4}^{-}(H_{2}O)_{n}. & (b) \end{cases}$$
(R3)

We found Reaction (R3a) to be highly endothermic with Gibbs free energy changes 11.9, 10.4, and 9.8 kcal mol⁻¹ for n = 0, 1, and 2, respectively (see Fig. 4). Thereby, decomposition of SO₃SO₃⁻(H₂O)_n by SO₃ evaporation is negligible at standard conditions.

Using Eq. (8), the rate constant of Reaction (R3b) was determined to be $k_{(R3b)} = 3.9 \times 10^2$, 4.7×10^3 , and $8.8 \times 10^2 \text{ s}^{-1}$ for n = 0, 1, and 2, respectively. The halflife, τ , of $SO_3SO_3^-(H_2O)_n$ can then be evaluated as (Atkins and de Paula , 2006)

$$\tau = \frac{\ln(2)}{k_{(\text{R3b})}}.$$
(9)

¹⁵ Values of $\tau = 774$, 64, and 343 µs obtained for n = 0, 1, and 2, respectively, indicate that the SO₃SO₃⁻(H₂O)_n species lives long enough to experience collision with the most abundant atmospheric species (e.g., N₂, O₂, H₂O), whereas collisions with trace oxidants, e.g., O₃ or OH, are less likely. This suggests that thermal equilibrium between SO₃SO₃⁻(H₂O)_n, SO₂SO₄⁻(H₂O)_n, and separated SO₄⁻(H₂O)_n and SO₂ prevail.

20 3.3 Equilibria and cluster distribution

10

Although ionic species in the atmosphere are mostly detected unhydrated, probably due to evaporation of water in the mass spectrometrers, many anions are known to bind a few water molecules at typical tropospheric conditions (Seta, 2003; Husar et al.,

2012; Bork et al., 2011). It is well known that the degree of solvation of chemical species affects their further reaction in the atmosphere. We therefore proceeded to examine the hydration state of the most stable anionic species studied in this work.

Upon SO₂ and SO₄⁻(H₂O)_n collisions, the resulting product clusters will most likely ⁵ undergo water condensation and evaporation in order for the thermal equilibrium to settle. In addition to Reactions (R1) and (R2a), the other relevant equilibria (as also shown in Fig. 1) are given below

$$SO_{4}^{-}(H_{2}O)_{n-1} + H_{2}O \rightleftharpoons SO_{4}^{-}(H_{2}O)_{n},$$

$$SO_{2}SO_{4}^{-}(H_{2}O)_{n-1} + H_{2}O \rightleftharpoons SO_{2}SO_{4}^{-}(H_{2}O)_{n},$$
(R5)
$$SO_{3}SO_{3}^{-}(H_{2}O)_{n-1} + H_{2}O \rightleftharpoons SO_{3}SO_{3}^{-}(H_{2}O)_{n}.$$
(R6)

For Reaction (R4), we found that the first and second water molecules bind with similar strength to the SO_4^- ion. The Gibbs free energy changes are determined to be $\Delta G_{(R4)}^o = -3.3$ and $-3.1 \text{ kcal mol}^{-1}$ for n = 1 and 2, respectively (see Fig. 4). The comparison of the first hydration Gibbs free energy to the $-5.1 \text{ kcal mol}^{-1}$ experimental value (Fehsenfeld and Ferguson, 1974) shows that we might be somewhat underestimating the hydration of SO_4^- at standard conditions. However, the values of the Gibbs free energy changes of Reaction (R4) indicate that the SO_4^- ion most likely binds at least two water molecules at standard conditions since the binding Gibbs free energies are more negative than the critical clustering energy. The critical clustering energy (represented as a dotted line on Fig. 4) calculated at 298.15 K and 50 % RH is $RT \times \ln([H_2O]) = -2.5 \text{ kcal mol}^{-1}$.

Although the additions of the first and second water molecules to either $SO_2SO_4^-$ or $SO_3SO_3^-$ are thermodynamically favourable at standard conditions, the hydration energies of these species are less negative than the hydration energies of SO_4^- . Further,

the Gibbs free energies of the first and second water addition to $SO_2SO_4^-$ and $SO_3SO_3^$ are both less negative than the critical clustering energy (see Fig. 4) and these ions are thus predicted to be mostly unhydrated at standard conditions.

After determining the thermodynamics of the above reactions, we can use the law of mass action,

$$\frac{\left[\mathrm{SO}_{4}^{-}(\mathrm{H}_{2}\mathrm{O})_{n}\right]}{\left[\mathrm{SO}_{4}^{-}(\mathrm{H}_{2}\mathrm{O})_{n-1}\right]} = \left[\mathrm{H}_{2}\mathrm{O}\right] \times \exp\left(-\frac{\Delta G_{(\mathrm{R4})}}{RT}\right),\tag{10}$$

- to calculate the relative concentrations of the different hydrates at given conditions. Equation (10) is written for Reaction (R4) and similar equations exist for Reactions (R1), (R2a), (R5), and (R6). Combining these, we can determine the relative abundance of all the hydrates at thermal equilibrium. The distribution at two different SO₂ concentrations, 2 ppb and 200 ppb, corresponding approximately to continental background air and urban air, respectively, and three different RHs (10%, 50%, and 90%) are shown in Fig. 5. At 2 ppb of SO₂, the equilibrium cluster population consists mostly of the SO₄⁻ hydrates regardless of the RH. When the concentration of SO₂ is 200 ppb, the SO₄⁻ hydrates still dominate the distribution at all RHs, but the SO₃SO₃⁻ hydrates are present in a moderate proportion. Further, an important feature is observed at 10% RH where the unhydrated SO₃SO₃⁻ ion is the most abundant species (45% of the total population). This result can be explained by three reasons:
 - SO₂ and water concentrations are different only by four orders of magnitude under these conditions, compared to the six orders of magnitude in the case of 2 ppb of SO₂,
- $_{20}$ SO₂ binds more strongly to SO₄⁻ than water does,
 - the concentrations of $SO_2SO_4^-$, $SO_3SO_3^-$, and separated SO_4^- and SO_2 are in thermal equilibrium.

Our results suggest that SO_2 oxidation in the $SO_2SO_4^-$ complex would be most important in regions with low RH and high SO_2 concentration.

4 Conclusions

In this study, the chemical fate of atmospheric $SO_4^-(H_2O)_n$ anionic clusters has been investigated by exploring its reaction with SO_2 using ab initio calculations and kinetic modeling. Geometries and formation Gibbs free energies of all relevant species, as ⁵ well as the rate constant of formation of the products were determined. The reaction leads to immediate formation of the $SO_2SO_4^-(H_2O)_n$ reactant complex which is found to isomerize at standard conditions to $SO_3SO_3^-(H_2O)_n$ by overcoming an energy barrier.

The overall reaction is SO_2 oxidation by the $SO_4^-(H_2O)_n$ anion.

In the SO₂SO₄⁻(H₂O)_n isomerization to SO₃SO₃⁻(H₂O)_n, the transition state is slightly stabilized by the presence of a single water molecule, but destabilized when the reactant complex binds two water molecules. Instead, the presence of two water molecules favours the decomposition of the reactant complex to form the initial reactants. At standard conditions, the bimolecular oxidation rate constants are determined to 1.1×10^{-10} ,

 3.4×10^{-11} , and 1.8×10^{-13} cm³ molecule⁻¹ s⁻¹, for n = 0, 1, and 2, respectively.

At a given temperature, the equilibrium distribution of the clusters depends on the SO_2 concentration and the relative humidity. At 298.15 K, the concentration of $SO_3SO_3^-$ at equilibrium is highest for high SO_2 concentration (200 ppb) and low relative humidity (10%). Under these conditions, $SO_3SO_3^-$ is the most abundant species at thermal equilibrium in the $SO_2 + SO_4^-(H_2O)_n$ reaction, and constitutes 45% of the total population.

²⁰ The Supplement related to this article is available online at doi:10.5194/acpd-14-12863-2014-supplement.

Acknowledgements. We thank the ERC project 257360-MOCAPAF, the Academy of Finland (LASTU program project number 135054), and the Villum foundation for funding. We acknowledge the CSC-IT Centre for Science in Espoo, Finland for computing time.

References

5

30

- Alder, T. B., Knizia, G., and Werner, H.-J.: A simple and efficient CCSD(T)-F12 approximation, J. Chem. Phys., 127, 221106-1–221106-4, doi:10.1063/1.2817618, 2007. 12866
- Atkins, P. and de Paula, J.: Physical Chemistry, 8th edn., Oxford University Press, New York, 2006. 12871
- Boldyrev, A. I. and Simons, J.: Isolated SO_4^{2-} and PO_3^{-} anions do not exist, J. Phys. Chem., 98, 2298–2300, 1994. 12865
- Bork, N., Kurtén, T., Enghoff, M. B., Pedersen, J. O. P., Mikkelsen, K. V., and Svensmark, H.: Ab initio studies of $O_2^-(H_2O)_n$ and $O_3^-(H_2O)_n$ anionic molecular clusters, $n \le 12$, Atmos. Chem. Phys., 11, 7133–7142, doi:10.5194/acp-11-7133-2011, 2011. 12865, 12872
- ¹⁰ Phys., 11, 7133–7142, doi:10.5194/acp-11-7133-2011, 2011. 12865, 12872 Bork, N., Kurtén, T., Enghoff, M. B., Pedersen, J. O. P., Mikkelsen, K. V., and Svensmark, H.: Structures and reaction rates of the gaseous oxidation of SO₂ by an $O_3^-(H_2O)_{0--5}$ cluster – a density functional theory investigation, Atmos. Chem. Phys., 12, 3639–3652, doi:10.5194/acp-12-3639-2012, 2012. 12865
- ¹⁵ Bork, N., Kurtén, T., and Vehkamäki, H.: Exploring the atmospheric chemistry of O₂SO₃⁻ and assessing the maximum turnover number of ion-catalysed H₂SO₄ formation, Atmos. Chem. Phys., 13, 3695–3703, doi:10.5194/acp-13-3695-2013, 2013. 12864
 - Bork, N., Du, L., and Kjaergaard, H. G.: Identification and characterization of the HCI–DMS gas phase molecular complex via infrared spectroscopy and electronic strucure calculations, J. Phys. Chem. A, 118, 1384–1389, doi:10.1021/jp411567x, 2014. 12866
- Phys. Chem. A, 118, 1384–1389, doi:10.1021/jp411567x, 2014. 12866
 Dawson, M. L., Varner, M. E., Perraud, V., Ezell, M. J., Gerber, R. B., and Finlayson-Pitts, B. J.: Simplified mechanism for new particle formation from methanesulfonic acid, amines, and water via experiments and ab initio calculations, P. Natl. Acad. Sci. USA, 109, 18719–18724, 2012. 12865
- Dunning, T. H.: Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen, J. Chem. Phys., 90, 1007–1023, 1989. 12866
 - Ehn, M., Junninen, H., Petäjä, T., Kurtén, T., Kerminen, V.-M., Schobesberger, S., Manninen, H. E., Ortega, I. K., Vehkamäki, H., Kulmala, M., and Worsnop, D. R.: Composition and temporal behavior of ambient ions in the boreal forest, Atmos. Chem. Phys., 10, 8513–8530, doi:10.5194/acp-10-8513-2010, 2010. 12865

Elm, J., Bilde, M., and Mikkelsen, K. V.: Assessment of density functional theory in predicting structures and free energies of reaction of atmospheric prenucleation clusters, J. Chem. Theory Comput., 8, 2071–2077, doi:10.1021/ct300192p, 2012. 12865

Enghoff, M. B., Bork, N., Hattori, S., Meusinger, C., Nakagawa, M., Pedersen, J. O. P.,

Danielache, S., Ueno, Y., Johnson, M. S., Yoshida, N., and Svensmark, H.: An isotopic analysis of ionising radiation as a source of sulphuric acid, Atmos. Chem. Phys., 12, 5319–5327, doi:10.5194/acp-12-5319-2012, 2012. 12864

Erying, H.: The activated complex in chemical reactions, J. Chem. Phys., 3, 107–114, doi:10.1063/1.1749604, 1935. 12870

¹⁰ Fahey, D. W., Böhringer, H., Fehsenfeld, F. C., and Ferguson, E. E.: Reaction rate constants for $O_2^-(H_2O)_n$ ions n = 0 to 4, with O_3 , NO, SO₂, and CO₂, J. Chem. Phys., 76, 1799–1805, doi:10.1063/1.443220, 1982. 12864

Fehsenfeld, F. C. and Ferguson, E. E.: Laboratory studies of negative ion reactions with atmospheric trace constituents, J. Chem. Phys., 61, 3181–3193, 1974. 12864, 12865, 12870, 12872

Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Ki-

15

- tao, O., Nakai, H., Vreven, T., Montgomery, J. A., Peralta, Jr. J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Keith, T., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, J. M., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W.,
- Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, Ö., Foresman, J. B., Ortiz, J. V., Cioslowski, J., and Fox, D. J.: Gaussian 09, Revision, D.01, Gaussian, Inc., Wallingford CT, 2009. 12867

Fukui, K.: The path of chemical reactions – the IRC approach, Accounts Chem. Res., 14, 363–368, 1981. 12867

³⁰ Harris, E., Sinha, B., van Pinxteren, D., Tilgner, A., Fomba, K. W., Schneider, J., Roth, A., Gnauk, T., Fahlbusch, B., Mertes, S., Lee, T., Collett, J., Foley, S., Borrmann, S., Hoppe, P., and Herrmann, H.: Enhanced role of transition metal ion catalysis during in-cloud oxidation of SO₂, Science, 340, 727, doi:10.1126/science.1230911, 2013. 12864

- 12877
- 12867

men, J., Downard, A., Ehn, M., Flagan, R. C., Haider, S., Hanse, A., Hauser, D., Jud, W., Junninen, H., Kreiss, F., Kvashin, A., Laaksonen, A., Lehtipalo, K., Lima, J., Lovejoy, E. R., Makhmutov, V., Mathot, S., Mikkilä, J., Minginette, P., Mogo, S., Nieminen, T., Onnela1, A., Pereira, P., Petäjä, T., Schnitzhofer, R., Seinfeld, J. H., Sipilä, M., Stozhkov, Y., Stratmann, F., Tomé, A., Vanhanen, J., Viisanen, Y., Vrtala, A., Wagner, P. E., Walther, H., Weingartner, E.,

Herb, J., Xu, Y., Yu, F., and Nadykto, A. B.: Large hydrogen-bonded pre-nucleation

Husar, D. E., Temelso, B., Ashworth, A. L., and Shields, G. C.: Hydration of the bisulfate ion:

Kirkby, J., Curtius, J., Almeida, J., Dunne, E., Duplissy, J., Ehrhart, S., Franchin, A., Gagné, S.,

 $(HSO_4)(H_2SO_4)_m(H_2O)_k$ and $(HSO_4)(NH_3)(H_2SO_4)_m(H_2O)_k$ clusters in the Earth's atmo-

atmospheric implications, J. Phys. Chem. A, 116, 5151–5163, doi:10.1021/ip300717i, 2012.

Ickes, L., Kürten, A., Kupc, A., Metzger, A., Riccobono, F., Rondo, L., Schobesberger, S., Tsagkogeorgas, G., Wimmer, D., Amorim, A., Bianchi, F., Breitenlechner, M., David, A., Dom-

- Wex, H., Winkler, P. M., Carslaw, K. S., Worsnop, D. R., Baltensperger, U., and Kulmala, M.: 15 Role of sulphuric acid, ammonia and galactic cosmic rays in atmospheric aerosol nucleation, Nature, 476, 429-435, 2011. 12865
 - Mauldin III, R. L., Berndt, T., Sipilä, M., Paasonen, P., Petäjä, T., Kim, S., Kurtén, T., Stratmann, F., Kerminen, V.-M., and Kulmala, M.: A new atmospherically relevant oxidant of sul-
- phur dioxide, Nature, 488, 193-196, 2012. 12864 20

sphere, J. Phys. Chem. A, 117, 133–152, 2013. 12865

5

10

25

12871

- Möhler, O., Reiner, T., and Arnold, F.: The formation of SO_5^- by gas phase ion-molecule reactions, J. Chem. Phys., 97, 8233-8239, 1992. 12864, 12870
- Nadykto, A. B. and Yu, F.: Uptake of neutral polar vapor molecules by charged clusters//particles: enhancement due to dipole-charge interaction, J. Geophys. Res., 108, 4717, doi:10.1029/2003JD003664.2003.12870
- Nadykto, A. B., Yu, F., and Herb, J.: Towards understanding the sign preference in binary atmospheric nucleation, Phys. Chem. Chem. Phys., 10, 7073-7078, 2008. 12865
- Ortega, I. K., Kupiainen, O., Kurtén, T., Olenius, T., Wilkman, O., McGrath, M. J., Loukonen, V., and Vehkamäki, H.: From guantum chemical formation free energies to evaporation rates,
- Atmos. Chem. Phys., 12, 225–235, doi:10.5194/acp-12-225-2012, 2012. 12865, 12869 30 Peng, C., Ayala, P. Y., Schlegel, H. B., and Frisch, M. J.: Using redundant internal coordinates to optimize equilibrium geometries and transition states, J. Comput. Chem., 17, 49-56, 1996.

Peterson, K. A., Alder, T. B., and Werner, H.-J.: Systematically converged basis set for explicitly correlated wavefunctions: the atoms H, He, B-Ne, and Al-Ar, J. Chem. Phys., 128, 084102-1–084102-12, doi:10.1063/1.2831537, 2008. 12866

Purvis, G. D. and Bartlett, R. J.: A full coupled cluster singles and doubles model: the inclusion

⁵ of disconnected triples, J. Chem. Phys., 76, 1910–1918, doi:10.1063/1.443164, 1982. 12866 Seta, T., Yamamoto, M., Nishioka, M., and Sadakata, M.: Structures of hydrated oxygen anion clusters: DFT calculations for $O^{-}(H_2O)_n$, $O_2^{-}(H_2O)_n$, and $O_3^{-}(H_2O)_n$ (n = 0-4), J. Phys. Chem. A, 107, 962–967, doi:10.1021/jp0271662, 2003. 12871

Su, T. and Bowers, M. T.: Theory of ion polar molecule collisions. Comparison with experimen-

- tal charge transfer reactions of rare gas ions to geometric isomers of difluorobezene and dichloroethylene, J. Chem. Phys., 58, 3027–3037; doi:10.1063/1.1679615, 1973. 12870
 - Su, T. and Chesnavich, W. J.: Parametrization of the ion-polar molecule collision rate constant by trajectory calculations, J. Chem. Phys., 76, 5183–5185, doi:10.1063/1.442828,, 1982. 12870
- ¹⁵ Tsona, T. N., Bork, N., and Vehkamäki, H.: On the gas-phase reaction between SO₂ and $O_2^-(H_2O)_{0-3}$ clusters an ab initio study, Phys. Chem. Chem. Phys., 16, 5987–5992, doi:10.1039/c3cp54715a, 2014. 12866

Vehkamäki, H.: Classical Nucleation Theory in Multicomponent Systems, Springer, Berlin, 2006. 12869

²⁰ Vereecken, L., Harder, H., and Novelli, A.: The reaction of Criegee intermediates with NO, RO₂, and SO₂, and their fate in the atmosphere, Phys. Chem. Chem. Phys., 14, 14682–14695, doi:10.1039/c2cp42300f, 2012. 12864

Wang, X.-B., Nicholas, J. B., and Wang, L.-S.: Electronic instability of isolated SO₄²⁻ and its solvation stabilaization, J. Chem. Phys., 113, 10837–10840, doi:10.1063/1.1333703, 2000. 12865

25

Welz, O., Savee, J. D., Osborn, D. L., Vasu, S. S., Percival, C. J., Shallcross, D. E., and Taatjes, C. A.: Direct kinetic measurements of criegee intermediate (CH₂OO) formed by reaction of CH₂I with O₂, Science, 335, 204–207, doi:10.1126/science.1213229, 2012. 12864

Werner, H.-J., Knowles, P. J., Knizia, G., Manby, F. R., and Schütz, M.: Molpro: a general-

- ³⁰ purpose quantum chemistry program package, WIREs Comput. Mol. Sci., 2, 242–253, doi:10.1002/wcms.82, 2012a. 12867
 - Werner, H.-J., Knowles, P. J., Knizia, G., Manby, F. R., Schütz, M., Celani, P., Korona, T., Lindh, R., Mitrushenkov, A., Rauhut, G., Shamasundar, K. R., Adler, T. B., Amos, R. D.,

Bernhardsson, A., Berning, A., Cooper, D. L., Deegan, M. J. O., Dobbyn, A. J., Eckert, F., Goll, E., Hampel, C., Hesselmann, A., Hetzer, G., Hrenar, T., Jansen, G., Köppl, C., Liu, Y., Lloyd, A. W., Mata, R. A., May, A. J., McNicholas, S. J., Meyer, W., Mura, M. E., Nicklass, A., O'Neill, D. P., Palmieri, P., Peng, D., Pflger, K., Pitzer, R., Reiher, M., Shiozaki, T., Stoll, H., Stone, A. J., Tarroni, R., Thorsteinsson, T., and Wang, M.: MOLPRO, version 2012.1, a package of ab initio programs, available at: http://www.molpro.pet (last access: 4 December

age of ab initio programs, available at: http://www.molpro.net (last access: 4 December 2013), 2012b. 12867

5

Yanai, T., Tew, D. P., and Handy, N. C.: A new hybrid exchange-correlation functional using the Coulomb-attenuating method (CAM-B3LYP), Chem. Phys. Lett., 393, 51–57, 2004. 12865

Table 1. Comparison of Gibbs free energy changes of the indicated reactions. Structures and
thermal correction terms are calculated by CAM-B3LYP/aVDZ, and electronic corrections are
calculated according to Eq. (1) using the indicated methods and basis sets. Experimental data
from Fehsenfeld and Ferguson (1974) are included. Energy units are kcal mol ⁻¹ .

Method	$SO_4^- + H_2O \rightarrow SO_4^-(H_2O)$	$SO_4^- + SO_2 \rightarrow SO_4^-(SO_2)$	$SO_2SO_4^- \rightarrow TS$
CAM-B3LYP/aVDZ	-2.4	-5.0	9.3
CCSD(T)/aVDZ	-3.3	-5.6	10.0
CCSD(T)/aVTZ	-3.0	-4.2	9.8
CCSD(T)-F12/VDZ-F12	-2.8	-3.5	9.5
CCSD(T)-F12/VTZ-F12	-2.7	-3.6	-
Experiment	-5.1	-6.7	_

Table 2. Bimolecular rate constant $(k_{\text{ox, bimol}})$ of the SO₂ + SO₄⁻(H₂O)_n \rightarrow SO₃SO₃⁻(H₂O)_n reaction.

п	$k_{\rm ox, \ bimol}$ (cm ³ molecule ⁻¹ s ⁻¹)
0	1.1×10^{-10}
1	3.4×10^{-11}
2	1.8×10^{-13}

AC 14, 12863–1	PD 2886, 2014		
Chemical fate of SO ₄ by gas phase reaction with SO ₂			
N. T. Tsc	ona et al.		
Title	Page		
Abstract	Introduction		
Conclusions	References		
Tables	Figures		
I.	۶I		
	•		
Back	Close		
Full Scre	en / Esc		
Printer-frier	dly Version		
Interactive Discussion			
CC O			

Discussion Paper

Discussion Paper

Discussion Paper

Discussion Paper

Figure 1. Main reactions/equilibria in the SO₂ + SO₄⁻(H₂O)₀₋₂ \rightarrow SO₃SO₃⁻(H₂O)₀₋₂ reaction.

Figure 2. Configurations of the most stable structures of (a) $SO_2SO_4^-(H_2O)_{0-2}$, (b) TS, and (c) $SO_3SO_3^-(H_2O)_{0-2}$. Descriptive bond lengths in the SOS linkage are included. The colour coding is red = oxygen, yellow = sulfur, and white = hydrogen.

Figure 3. Gibbs free energies of formation of the most stable species involved in the reaction between SO_2 and $SO_4^-(H_2O)_n$. All the Gibbs free energies are calculated relative to $SO_2 + SO_4^-(H_2O)_n$. "TS" denotes the transition state. Numerical values are given in the Supplement.

Figure 4. Hydration Gibbs free energy of the SO_4^- , $SO_2SO_4^-$, and $SO_3SO_3^-$ ions at standard conditions. The black dotted line delimits the domains where water condensation is favoured (below the dotted line) and where water evaporation is favoured (above the dotted line).

Discussion Paper

